
GridFly: Generating and Transforming Web Layouts using
Lightweight Grid Templates

Marcio dos Santos Galli
TelaSocial

São Carlos, Brazil
mgalli@telasocial.com

Rudinei Goularte
ICMC, University of Sao Paulo

São Carlos, Brazil
rudinei@icmc.usp.br

ABSTRACT
Modern JavaScript toolkits and standards continue to inter-
operate, and to support developers positively to design pages
with a greater level of separation of concerns, thus ensuring
reasonable structure to HTML documents and supporting
client interaction with external systems. This paper focuses
in the layout area and the demands for responsive design
and fluid layout experiences, which is also supported by in-
dustry factors, such as screen resolution, which is a response
of the availability of Web engines present in tablets, mobile
devices, and other appliances.

The project proposes a declarative model that enables the
generation and transformation of HTML layout which ad-
heres to good design principles, such as separation of con-
cerns, and modern demands for responsive layout. A demon-
stration will cover the benefits for developers, first with an
use case for modern HTML layout generation based on a
lightweight notation based in a 2D grid. The work also cov-
ers the use of such declarative notation to achieve ongoing
layout transformations that can benefit developer when cre-
ating dynamic web applications.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]:
H.5.2 User Interfaces
H.5.4 Hypertext/Hypermedia User Issues

General Terms
Human factors, algorithms, design

Keywords
W3C; DOM; HTML5; CSS3; JavaScript; Web; Table-less,
Grid Layout

1. INTRODUCTION
GridFly demonstration
http://labs.telasocial.com/grid-layout

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Web engines are ubiquitous among mobile devices and
desktops; and it continues to reach out in a new range of
appliances, which motivates developers to deliver interfaces
that can scale among different screen sizes. Such practice
suggests a reduced cost of development and aligns with good
design principles such as separation between content and
style.

The general concept of reusing a markup with multiple
views is debated long before the modern idea of fluid and
responsive user interfaces. In Going to Print [7], the author
discusses design principles and the use of CSS Media types
[1] for printing online documents, and suggests to avoid the
regeneration of markup which was common in the early days
of the web.

As for responsive web design, CSS3 Media queries [8] plays
a central role, as it allows web pages to have associated style
rules based on conditional expressions, thus delivering styles
based in particular media features, such as screen resolution.
The following example shows the media query and style rules
for a page that can be displayed in two different screen con-
ditions.

@media (max-width:800px) {

.cell { width:33%}

}

@media (max-width:320px) {

#thirdColumn { display:none }

.cell { width:50%}

}

This example has a markup that creates columns imple-
mented with 3 sibling DIV elements which are nested under
a main DIV. In order for the inner DIV elements to be next
to each other, they depend on the ”display:inline” CSS prop-
erty.

<div id=’gridrow’>

<div id=’firstColumn’ class=’cell’>...

</div>

<div id=’secondColumn’ class=’cell’>...

</div>

<div id=’thirdColumn’ class=’cell’>...

</div>

</div>

The figure 1 illustrates the end results for this layout under
the 800x600 and 320x200 case.

Such experiences were commonly written with JavaScript
and DOM interfaces. While this can now be achieved us-
ing CSS, using modern browsers, there are limitations in

Figure 1: A web page, on the left, displays the 3 col-
umn layout. On the right the 3rd column is hidden
and font is larger

terms of what CSS can style because modern pages are cur-
rently written using nested HTML elements. In the next
section, we present more about the case for nested elements,
i.e. hierarchical markup, that is commonly found in modern
pages.

Our work explores a model that enables the creation of
modern layouts using a simple 2D notation representing the
grid. This approach offers a further level of separation sug-
gesting that cell arrangements, in a given grid-based layout
specification, can be generated or transformed using sim-
plified rules, thus simplifying the process of adapting 2D
grid specifications to the hierarchical structure demanded
by modern layout techniques.

A prototype is currently available in JavaScript, and it
uses an underlying toolkit API that enables developers to
create fluid and responsive layouts. Two scenarios are demon-
strated in order to cover the benefits of the proposed model.
The first, covers the generation of grid layouts using 2D spec-
ifications based in short strings - the grid generator. This
section will cover the mechanism behind the transformation
and also an example that shows an interactive 2D editor
that generates a table-less [2] markup. The second scenario
involves a layout that gets transformed during an user ses-
sion and will cover the benefits of using lightweight strings
as events of transformation for dynamic pages.

These demonstrations are implemented based in a toolkit
currently written in JavaScript. The paper focuses in the
benefits for the developer and also highlights the importance
for declarative models with a greater level of control when
generating and manipulating layouts. In the final section,
we will conclude with a focus the strategic long term benefits
for developers and the industry in general.

2. TABLE-LESS LAYOUTS AND STYLE
Table-less is a general concept for implementing HTML

pages without the table element. A table can also be seen
as a grid - with rows and columns and cells arranged within.
The following represents a specification for a table with 2
columns and 2 rows with cells A, B, C, and D. With early
HTML specifications, a page would require the use of the
HTML table element which provides a markup that is closer
to the actual 2D representation.

A B

C D

Such layout can be implemented with tables with ”tr” el-
ements enclosing rows and ”td” elements enclosing the cells.

<table>

<tr>

<td>A</td><td>B</td>

</tr>

<tr>

<td>C</td><td>D</td>

</tr>

</table>

The Table element was widely used in the 1990s. Mainly
to its intuitive and easy to implement model, since the markup
representation is closer to the 2D representation; and due to
the limitations provided by CSS. These aspects also con-
tributed to a high availability of WYSIWYG tools back
then. With improved CSS being available in browsers, devel-
opers found a way to create table-equivalent layouts using
elements for content and having the layout control in the
CSS. Additionally, with demands for more dynamic sites,
developers found difficult to use the DOM to modify tables.
As an example, if a developer wants to remove the right
column of the table, one solution is iterate through all the
rows.

A problem, however, is that more complex grid layouts
can demand hierarchical HTML elements, i.e. the concept
of containers. The following figure 2 illustrates a visual rep-
resentation for a page with the following markup. Note that
the class=”inline” notation is being used to signal the dif-
ference between inline and block-level DIV elements. The
actual presentation behaviour for such desired differences is
achieved simply using CSS.

<div>

<div class=’inline’>A</div>

<div class=’inline’>B</div>

<div class=’inline’>C</div>

</div>

<div>

<div class=’inline’>

<div> D </div>

<div>

<div class=’inline’> F </div>

<div class=’inline’> G </div>

</div>

</div>

<div class=’inline’>E</div>

</div>

The above example presents a case of a very simple ta-
ble which has a reasonably complex hierarchical structure
in terms of markup. So while table-less is elegant, due to
style rules being outside the markup, it also requires deep
understanding and the developer needs to create a mental
model between the 2D representation and the hierarchical
model using containers of two main types: block level (which
breaks lines) and inline (which can display elements side by
side). This may also be a reason that WYSIWYG tools are
not common anymore.

Figure 2: Each square within a square represents a
nested HTML container. A bordered square repre-
sents a real cell which spaces within the borderless
placeholder element. Connectors indicate sibbling
DOM elements

3. SCENARIO 1:
GRID EDITOR

Our initial case is to offer a model that allows the creation
of table-less layouts using a simple to understand specifi-
cation. We recognise that the actual markup, served to a
browser, should remain consistent to the demands for table-
less and grid layouts. Figure 3 shows an example with a 2D
specification and our proposed model to be used with our
transformation toolkit.

Figure 3: A short string of characters at the right,
is used to represent how cells expand in a 3x3 un-
derlying grid

The toolkit basically takes arguments, such as ”ABCD-
DEFGE” and additional parameters, such as the number of
columns, and walks through these cells looking for sibling
elements - one or more repetitions. If a cell, say E, repeats,
it means it’s the same cell. As the toolkit walks through, it
creates clusters that should never break cells. For instance
EE and DFG are contained in in a cluster and this should
imply that DIV will contain these cells, aside from the possi-
bility of other inner DIVs within. Our editor demonstration
is an application that allows an user to draw ”table” using
a 2D model, which gets generated, via the toolkit, and be-
comes markup in hierarchical form as expected by modern
techniques. In figure 2, each letter represents a cell however

the containers are also indicated with alternating colors.
While dependent on JavaScript, the implementation shows

that a potential developer would define its layout using struc-
tures that are more declarative in comparison to the nested
markup which is what the browser expects. The the above
example, the JavaScript API call would look like:

// JavaScript API call

grid_generate(3,"ABCDDEFGE");

And the markup would have cells one cell for each charac-
ter, thus A, B, C, D, E, F, and G. Similarly to any table-less
layout, the actual cell sizes would be defined in the CSS.
These values are inferred as the toolkit walks through the
cells and while the model is being assembled by our proto-
typed engine.

4. SCENARIO 2:
GRID TRANSFORMER

Dynamic HTML became widely adopted once browser en-
gines enabled JavaScript accessing DOM interfaces. With
further support, such as XML and a data-loading mecha-
nism called XMLHTTPRequest, a new type of web applica-
tions gained popularity. Technical models, referred as Inner-
browsing [4] and AJAX [5], are indicators of the extent iof
interest by developers, also driven by a market trend referred
as rich internet applications. The impact was that many
pages became complex if taken in consideration the content
structure. As an example, a search crawler, when visiting
an AJAX-based web page, will parse mainly the declarative
portion of the page to build its index.

W3C’s JavaScript Web APIs [6] recognises the impor-
tance of declarative approaches which improving reusabil-
ity and creates ground for innovation. The greater adoption
of rich applications also impacted in a wide recognition of
challenges, such as the challenges of testing [3], and created
opportunities for models of pages analysis and toolkits for a
more organised and structure development.

Our grid transformer example shows a structured approach
to accomplish the generation and modification of a table-less
layout for an user session. As shown in the first scenario, it
uses the 2D string specification for building the underlying
table-less layout. In addition, this demonstration focuses
in ongoing transformations that gets applied to the exist-
ing content. While it ensures a rich interface in terms of
adaptation of layout, it highlights that the use of declara-
tive transformations can go beyond content document and
cover layout changes over time based in events. The example
starts with the following layout:

A B

C D

The JavaScript code now involves the concept of a con-
tainer, which is the location where the grid is going to be
placed:

<script> grid_gen("2,ABCD","container"); </script>

<body>

<div id=’container’> ... </div>

</body>

When the grid is generated the container element will re-
ceived the nested DIV elements accordingly. The demon-
stration has also an interactive component which is is at-
tached as a behaviour to the page once the HTML is loaded.
For each quadrant, a click event observer is attached. When
the click event happens, the original transformation (2,ABCD)
is applied to the target element the event. The following
pseudo-code is an example of what happens after the click:

<script>

// after click

grid_gen("2,’A1’,’B1’,’C1’,’D1’", targetElement);

</script>

The expected effect is the generation of a new inner grid,
similar to the prior, placed in the target element that follows
from the click event. The demo allows for the creation of a
fractal effect as shown by figure 4.

Figure 4: On the left, original quadrants. On the
right, after click in quadrant D, it gets populated
with a grid similar to the original (A1, B1, C1, D1)

5. CONCLUSION AND FUTURE WORK
HTML was originally designed to be more semantic. On

the other hand, the extensive use of JavaScript provided
mechanisms that enabled the development of rich interfaces
and real-world explorations with use cases pushing Web stan-
dards further. In this work, we aim that our functional
demonstrations, while written in JavaScript, can contribute
to the discussion in the future of grid layouts.

The use of such simplified contextual grids, to specify lay-
out and layout transformations, implies that web page con-
tent reaches a new level of separation between content and
layout structure. A web page can have a grid layout and yet
the content elements can have a linear structure - and per-
haps structure that represents better the hierarchy of data
instead relying on a need for hierarchical structure that is
associated with layout requirements.

Our proposition for a lightweight model also suggests that
the rules of transformation can be used to coordinate ongo-
ing transformations within HTML, thus supporting web ap-
plications and aiming for a more consistent model enabling
external systems to fetch and infer on layout behavior. This

model may also support the original notion for a more se-
mantic HTML while ensuring that rich layout transforma-
tions which are highly demanded by today’s applications
from desktop to mobile, and more.

This greater level of separation may also serve as a ground
to further exploration for navigational and transformation
models that could be generated as a result of analysis with
external tools, such as tools using user experience heuris-
tics. The constraints and conditions for layout arrange-
ments could benefit from a wider range of attributes, and
even events, thus enabling more adaptability to the context
in which applications are being used, as opposite to layout
constraints tied to media-only specific characteristics, such
as screen resolution.

6. REFERENCES
[1] Css2 media types.

http://www.w3.org/TR/CSS2/media.html.

[2] Tableless web design. http:
//en.wikipedia.org/wiki/Tableless_web_design.

[3] K. Benjamin, G. V. Bochmann, G. vincent Jourdan,
and I. viorel Onut. Some modeling challenges when
testing rich internet applications for security.

[4] M. Galli, R. Soares, and I. Oeschger. Inner-browsing
extending the browser navigation paradigm.
https://developer.mozilla.org/en-US/docs/

Inner-browsing_extending_the_browser_

navigation_paradigm.

[5] J. J. Garrett. What is ajax.
http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications/.

[6] D. HazaÃńl-Massieux and W3C. Javascript web apis.
http:

//www.w3.org/standards/webdesign/script#beyond.

[7] E. A. Meyer. Css design: Going to print.
http://alistapart.com/article/goingtoprint.

[8] F. Rivoal, H. W. Lie, T. ÃĞelik, D. Glazman, and
A. van Kesteren. Media queries.
http://www.w3.org/TR/css3-mediaqueries/.

